[bookmark: _GoBack]

Testimonial Research Semester at Shibaura Institute of Technology

Bojan Lukic

Clausthal 2022

Inhalt
Communication and Preparation for the Research Semester	3
(Scientific) Communities at SIT	4
Research Project	6
Conclusion	7

[bookmark: _Toc99987228]Communication and Preparation for the Research Semester

The idea for the research semester at Shibaura Institute of Technology (SIT) came during my communciation with the International Center in Clausthal. I was looking for an opportunity to do some project which could benefit me during my work on the master’s thesis. I quickly found out via Mr. Heidemann that there is an opportunity to do projects and research at universities in Asia. After reading reviews about the university and doing my own research, I quickly decided to do the research project at SIT. Due to the pandemic, I did not have the chance to go to Japan and therefore had to conduct the research project online.
The application process for the admission at SIT was quite complex and I had to read a lot of guidelines and complementary resources to understand when, where, and how I needed to apply for the project. The writing of all necessary documents itself was quite straightforward and I received quick feedback from SIT. For the application, the student has three choices for professors he/she wants to study with during the research project and needs to write one application (one page) for each professor. In my case, I received a positive answer for the professor which was my first choice.
My professor, Masaomi Kimura, is affiliated to computer science and engineering and the head of the Data Science/Engineering Laboratory. I decided to work with him due to our overlapping interests in data science, machine learning, and in general computer science. The communication with the professor was very easy and straightforward. First, we communicated via email, but quickly switched to Slack, which is predominantly used at SIT and by the learning groups at the SIT.
After the start of the research semester, there was no need for further communication with the university itself and all necessary communication was done with professor Kimura. I did not have further contact with other professors/students at the SIT or the learning groups which I see as a direct result from the online studies and not being physically present at the university. The communication with both the staff at SIT and professor Kimura was always commendable and respectful. All parties were helpful and responded quickly.

[bookmark: _Toc99987229](Scientific) Communities at SIT

As shortly mentioned in the previous section, professor Kimura is the head of the Data Science/Engineering Laboratory and guides learning groups on Slack. The learning group that I was part of is the Data Engineering Laboratory 2022. This group is dedicated to all students and researchers who are part of professor Kimura’s laboratory and who work on different projects. Unfortunately, I did not have a lot of contact with other members, which I see as a result from conducting the research semester online and not seeing the people in person. The communication with professor Kimura was also done with Slack, using private messages.
There was information about communities affiliated with the SIT which are active on social media and in private, which I did not pursue further. Figure 1 and 2 show screenshots of the starting room and the group of professor Kimura on Slack.
[image: Ein Bild, das Text enthält.

Automatisch generierte Beschreibung]
Figure 1 - Starting room in Slack

[image: Ein Bild, das Text, Screenshot, Monitor, schwarz enthält.

Automatisch generierte Beschreibung]
Figure 2 - Data Science laboratory on Slack

[bookmark: _Toc99987230]Research Project

I was meeting professor Kimura on a wekly and sometimes bi-weekly basis. We had our first meeting in the beginning of January 2022 and the last at the end of March 2022. For each meeting I had to prepare (or rather update) a report which gave an overview on the achievements I made in the week and the status of the project. This report helped me keep track of my achievements and the milestones defined for the project. An exemplary report is shown in the following attachment:

The project itself was about the evaluation of machine learning models with error metrics and involved some statistics and computer science. The models used come from the domains of machine learning, statistics, and data analysis. The goal of the project was to create a program which could create synthetic multivariate time series from some input data, perform forecasts on the new data with machine learning models and quantify the quality of the machine learning models with metrics in an unsupervised manner. With the guidance of professor Kimura and some thorough research I managed to finish the project in the defined time frame. The project was concluded with a research paper, this paper is presented in the following attachment:

The meeting dates with professor Kimura were agreed upon on a weekly basis without any complications. Professor Kimura was very flexible when it came to finding fitting dates, even with the big time difference between Japanese Standard Time (JST) and European Central Time (ECT). Being part of the laboratory and working with professor Kimura was a lot of fun and very informative. I have excelled in the field of machine learning, benchmarking, and statistics with this project. Even though the project duration was quite short (three months) the project felt at no point in time rushed or stressful.

[bookmark: _Toc99987231]Conclusion

The research semester at SIT was most likely the best experience I could have had in the last semester of my master’s study. Since I did not have any more exams in that semester and a conventional semester abroad (including examinations and credit points to be achieved) would not have worked, the research semester at SIT provided the best solution in my situation. Professor Kimura, other students, and the staff of the SIT were all very kind and helpful. Thanks to the project I always had a neat side project which I could turn to whenever I had a break from my master’s thesis. I would like to thank Mr. Heidemann for the quick recommendation, professor Kimura for the interesting meetings and helpful guidance, and the SIT for making the research semester possible in the first place.
If there are any more questions about the research semester and my experiencce, I would love to answer them privately.

document.pdf

Benchmarking Machine Learning Models by
Assessing Forecasting Capabilities on Synthetic

Multivariate Times Series With a Benchmark Suite
Bojan Lukic

Shibaura Institute of Technology
Department of Computer Science and Engineering

Abstract— The application of machine learning (ML) models
is becoming increasingly popular in many different domains.
These models are used for different tasks, ranging from image
classification, over data segmentation, to time series prediction.
Even though the results of these applications are promoted by
experts as being very accurate and highly pleasing, the precise
quantification of the capabilities a ML model holds are to this
day still vague and not completely matured. This work gives
an overview on different methods for benchmarking state-of-the
art ML models with a novel metric by assessing the forecasting
capabilities of the models on synthetically created multivariate
time series. The tools used for achieving accurate benchmarking
results include a modified synthetic minority over-sampling
technique algorithm for generating synthetic time series from
an initial data set, an long-short term memory neural network
and an autoencoder neural network, as well as a novel metric
for measuring the predicted values from the neural networks
against some ground truth. A short introduction as well as the
related work on the topic of benchmarking ML models is given
in the next two chapters, before discussing the motivation and
presenting the methodology of this work. Finally, the results are
discussed towards the end of this work, before concluding it. The
results show that the for this work developed program manages to
successfully generate synthetic multivariate times series, perform
a prediction on the time series with a ML model, and benchmark
the outputs of the chosen ML models in an unsupervised manner.
At the same time, the user can pass inputs into the program
for modifying the synthetically generated data and increase the
variance for the results.1.

Keywords: machine learning, time series augmentation, neural
network, benchmark, synthetic time series.

I. INTRODUCTION

With the increased applications of ML models not only in compa-
nies for tasks like process optimization but also in research such as in
the medical industry, the need for quantifying the accuracy of outputs
from ML models emerges [1], [2], [3]. ML models are often measured
for accuracy using the validation and training loss during compilation
of the model and the use of single metrics, such as the mean average
error on the outputs of an ML model against some ground truth.
Relying on these types of evaluation methods after application of a
ML model has its drawbacks. The validation and training loss that
can be observed during the compilation of the ML model only gives
a relative quantification of the model’s capabilities and accuracy. This
is partly due to the model only performing training on an initial data
set that is split into training and validation data. Therefore, a high
accuracy during training does not necessarily correlate with a high

1See https://github.com/Bojan-Lukic for supplementary material.

accuracy when using the ML model after training with a new data set
that contains latent features fundamentally different from the inital
data set. The drawback of using some error measures on some trained
ML model is that often times, especially when applying predictions
or forecasts to new data sets, there is no ground truth to measure
against. In those cases experts, for instance, compare the results from
the ML model on some new data set with their own interpretation of
the data set and give an informal feedback about the accuracy of the
ML model.

This work gives an overview on how to tackle the obstacle of
thoroughly testing ML models before applying them for real life
tasks. For this purpose, a program is developed which, with some
user-specified input, generates multiple synthetic data sets from an
initial data set and performs forecasts on these newly generated data
sets before benchmarking the outputs in an unsupervised manner.
Different methods, such as the synthetic minority over-sampling
technique (SMOTE) and a suite of prevalent benchmarking metrics,
such as the root mean squared error (RMSE) are used for this
purpose. The ML models selected are the long-short term memory
(LSTM) neural network and the autoencoder neural network, due to
their successful applications in the field of time series forecasting
[4], [5], [6]. The assumption is that the program, with its selected
methods for data generation and time series forecasting is capable
of measuring the accuracy of applied machine learning models in
an unsupervised manner. The results show that with only a few user
inputs, the program can generate varying data sets which are used by
the neural network for time series forecasting, before benchmarking
the outputs of the ML model and giving an accuracy score for the
model.

The remaining work is structured as follows: In the next chapter,
an overview of the related work in the context of benchmarking
ML models is given. In chapter III the data as well as the methods
and models used in this work are shortly presented, before coming
to the development of an unsupervised ML benchmarking tool (i.e.
program) and its applications with some test data in chapter IV. The
results are discussed in chapter V and the paper is concluded in the
final chapter VI.

II. RELATED WORK

Benchmarking machine learning models is an emerging area which
is gathering increasing attention in recent times.

In their work [7] Sara Hooker et al. discuss empirical measures
for determining the accuracy of feature importance estimates in
deep neural networks. The authors talk about the interest in the
field of machine learning for quantifying the influence of different
inputs to the prediction made by a machine learning model. The
publication mainly focuses on removing information from the input
data set iteratively and understanding the degradation process of
the prediction accuracy of the machine learning model. Therefore,

https://github.com/Bojan-Lukic

this work can be seen as a steppingstone into the research of
benchmarking machine learning models with different input data.
The conclusion of the evaluation of input feature importance for
machine learning models is that commonly used base estimators
for the machine learning model are on par or worse with random
assignments of importance. While in this work only the accuracy of
the prediction has been used as benchmark criterion, other works,
such as [8], discuss more elaborate methods of benchmarking the
outputs of a machine learning model.

In their work [8], Lin Li et al. assessed the performance of different
machine learning approaches in predicting diabetic ketoacidosis. The
benchmark performed in their work involves following metrics: area
under the curve (AUC), accuracy, sensitivity, and specificity. With
these metrics the authors could successfully benchmark different
machine learning models for their performance against the same data
set.

André Bauer et al. propose in their work [9] a forecasting
benchmark for evaluating and ranking forecasting methods based on
performance. The benchmark metrics used by the authors are the
standard deviation of the forecast error and the standard deviation
of the time-to-result. Close to a dozen forecasting methods were
benchmarked for their performance using several 100 time series from
different domains. With their benchmark tool, the authors manage to
automatically evaluate and rank state-of-the art forecasting methods
and contribute to improve the comparability of forecasting methods.

In their work [10] on a benchmark suite for machine learn-
ing evaluation and comparison the authors present a framework
for benchmarking machine learning models. The metric balanced
accuracy, which is a normalized version of the metric accuracy,
is the fundamental method of benchmarking the tested machine
learning models. The framework Penn machine learning benchmark
(PLMB) acts as a classifier for the data sets used in the research,
incorporating meta-features such as instances, features and classes in
the data set. In total, 165 data sets were used to benchmark different
machine learning methods. The authors conclude that the framework
PMLB with the metric of balanced accuracy is an effective way of
comprehensively benchmarking machine learning models with the
use of different data sets.

Other relevant publications discussing the benchmarking of ma-
chine learning are [11] and [12].

III. METHODOLOGY

The methodology of this work is split into three parts. First,
the benchmark metric for assessing the capabilities of the machine
learning model are presented. Then, the SMOTE technique for
creating synthetic data sets from an existing data set is presented,
before shortly presenting the two machine learning models, namely
autoencoders and LSTM neural networks, used in this work.

A. Benchmark Metric for Assessing Capabilities of Machine
Learning Models

Regarding benchmark metrics for assessing the capabilities of
machine learning models, many experts on the field propose the use
of a collection of metrics in their works [13], [14], [15], [16]. Apart
from standard metrics used for error measurements, such as mean
average error (MAE) or root mean squared error (RMSE), the authors
additionally present modifications of existing benchmark metrics used
for quantifying the quality of machine learning models. The metrics,
which are used in this work, are shortly presented in this section.
In total, five metrics are used for evaluating the performance (i.e.
forecasting capabilities) of machine learning models. These metrics
are the root mean square error (RMSE, i.e. standard deviation), mean
absolute error (MAE), maximum error (ME), Pearson correlation
coefficient (CC), and Kolmogorov-Smirnov test (KST).

The root mean squared error represents the square root of the
second moment of the differences between some predicted values
and the observed values or the quadratic mean of these differences.
Equation 1 shows the formula for the RMSE.

RMSE =

√∑N
i=1(xi − x̂i)2

N
(1)

The value for RMSE can be between zero and infinity. The higher
the RMSE for some predicted values, the more the predicted values
deviate from the observed values. For a prediction model, a lower
RMSE indicates a better prediction.

The mean absolute error describes the absolute magnitude of the
deviation of some predicted values from the observed values. As
the errors are absolute, the metric disregards the direction of error.
Equation 2 shows the formula for the MAE.

MAE =

∑N
i=1(xi − x̂i)

N
(2)

The value for MAE can be between zero and infinity. The higher
the MAE for some predicted values, the more the predicted values
deviate from the observed values. For a prediction model, a lower
MAE indicates a better prediction.

The maximum error describes the maximum absolute error be-
tween some predicted values and the observed values. Equation 3
shows the formula for the ME.

ME =
N

max
i=1

(xi − x̂i) (3)

The value for ME can be between zero and infinity. The higher
the ME for some predicted values, the more the predicted values
deviate from the observed values. For a prediction model, a lower
ME indicates a better prediction.

The Pearson correlation coefficient (CC) is defined as the direction
and strength of the linear relationship between some predicted values
and the observed values. More precisely, the covariance of these
values is divided by the product of their standard deviations. Equation
4 shows the formula for the CC.

CC =

∑N
i=1(xi − x̄)(x̂i − ˆ̄x)√∑N
i=1(xi − x̄)2(x̂i − ˆ̄x)2

(4)

The value for CC can be between minus one and one. A value of
minus one indicates a strong negative relationship and a value of
positive one a strong positive relationship between some predicted
values and the observed values. For a prediction model, a higher CC
indicates a better correlation between predicted and observed values.

The Kolmogorov Smirnov test (KST) can be used to test the
goodness of fit between two random variables (i.e. predicted and
observed values). Specifically, it compares the underlying distribution
of some predicted values against the observed values. The value
for KST can be between zero and one. A high value indicates a
good fit and a low value a bad fit between some predicted and the
observed values. For a prediction model, a higher KST indicates a
better prediction.

All of these metrics are used for evaluating the performance of
machine learning models in the upcoming chapter. An alternative
description and the application of these and additional metrics can
be found in [13].

B. Creating Synthetic Data Sets by Augmentation With Syn-
thetic Minority Over-sampling Technique

Often, the challenge with quantifying the forecasting capabilities of
a machine learning model is the diversity and size of the test samples.
When observing outputs of machine learning models using test data

sets which are too small can lead to bias and does not necessarily
show the full capabilities or weaknesses of the models. Generating a
diverse and large data set for testing a machine learning model can
lead to a more accurate quantification of the model’s capabilities.

For this purpose, a technique for generating synthetic data from
an existing data set is used in this work. The technique is called
synthetic minority over-sampling (SMOTE) and was originally de-
veloped for synthetically expanding underrepresented samples in
data sets used for classification tasks [17]. Due to SMOTE being
capable of efficiently generating diverse, synthetic data sets while
capturing the latent features of some original data set used for the
data augmentation, it is used in this work. Because this work aims
at benchmarking machine learning models in an unsupervised way
while still allowing a user to make inputs in order to increase variance
of the data and adjust the machine learning models, a modification
of the SMOTE technique is implemented and presented here.

The SMOTE algorithm works by creating synthetic data samples
from an input data set. The single data points of the synthetic
samples are generated by selecting a random data point between a
reference data point and its k nearest neighbors [18]. The result is a
synthetic data set which contains the latent features of the original
data set while being different enough to augment the original data
set. A modified version of the SMOTE algorithm, incorporating some
data transformation to the data augmentation procedure, has been
implemented. Thus, additionally to the k nearest neighbor data aug-
mentation, mirroring, stretching, and shifting has been implemented
to increase the variance of the data created with the algorithm. Figure
1 shows a synthetically generated data set (bottom) created with the
SMOTE algorithm using some reference data set (top).

Figure 1. Data augmentation (bottom) using the SMOTE algorithm with some
reference data (top).

The pseudocode of the algorithm is depicted in table I. The code
shows the basic procedure of generating random samples from normal
distributions with the use of the k nearest neighbor using some
reference data point. At the end of the pseudocode, the additional
transformations, such as stretching and shifting, are depicted.

Inputs: time series T, number of new synthetic samples N
(multiple of 100), number of nearest neighbors k, variance
factor mult1, variance factor mult2.

1 minority_samples, features = T.shape

3 N = N/100
4 synthetic_samples = N * minority_samples
5 S = np.zeros(shape=(int(synthetic_samples), int(

features)))

7 neigh = NearestNeighbors(neighbors = k)
8 neigh.fit(T)

10 for i in range(minority_samples):
11 nn = neigh.kneighbors([T[i]])
12 for n in range(int(N)):
13 nn_index = choice(nn[0])
14 while nn_index == i:
15 nn_index = choice(nn[0])

17 dif = T[nn_index] - T[i]
18 gap = np.random.random()
19 S[n + i * int(N), :] = T[i,:] + gap * dif[:]

21 for i in range(0, len(S)):
22 if random.random() < 0.5:
23 temp = 1
24 else:
25 temp = -1
26 maxim = max(S[i])
27 mean = (max(S[i]) - min(S[i])) * mult1
28 S[i] = (((S[i] + np.random.normal(-mean, mean))

* np.random.normal(0.5, 1.5) * temp) + mult2 *
maxim) / 3

Output: synthetic data samples S

Table I
HIGH-LEVEL DESCRIPTION OF THE MODIFIED SMOTE ALGORITHM

C. Neural Networks for Time Series Forecasting
The two types of neural networks used in this work are the autoen-

coder and the long-short term memory (LSTM) neural network. Both
machine learning models have shown good results for time series
forecasting tasks [4], [5], [19]. Before applying the forecasting tasks
to some synthetic data sets in the next chapter, the two models are
first presented in more detail.

1) Long-short term memory neural network: Long-short term
memory (LSTM) neural networks are a special type of recurrent
neural network (RNN) which are, just like RNNs, capable of storing
long-term information. This is especially beneficial when working
with chronological sequences (e.g. time series) for storing long-
term dependencies. An advantage LSTMs neural networks have over
conventional RNNs is that they can keep information over a longer

period of time and therefore drop information that is not useful for
the model [20], [21], [22]. The basic architecture of an LSTM cell
is showin in figure 2

tanh

x x

x

x

σ
σ

σ tanhσ
σ

σ tanh

ht

ct

ht

xt

ct-1

tanh

x +

x

x

ht-1

Figure 2. Architecture of an LSTM cell [23].

An LSTM cell drops information that is not useful for the model in
a so called forget gate, which is controlled by an activation layer.
The activation layers is a binary layer which can output 0 or 1. If
the activation layer outputs 0, the gate drops all information in the
corresponding cell. The information is not dropped if the activation
layer outputs 1. In figure 2 the states of the LSTM cell are depicted
with the terms ct - 1, ht - 1, and xt, where ct - 1 is the long-term and ht - 1
the short-term state of the cell, and xt is the data input to be processed
by the network model. The pointwise operations are depicted with x
(i.e. multiplication) and + (i.e. summation), so depending on which
gate the information is traveling through, it is either multiplied or
summed with other information passing through the same gate. The
activation layers, namely sigmoid and than, act as binary gates either
letting information through (when 1) or dropping the information
altogether (when 0). The final outputs of the cell are ht and ct.

Due to its capabilities for storing long-term information and its
success in speech recognition and time series forecasting [4], the
LSTM cell will be used for this work, alongside the autoencoder
neural networks, which will be presented shortly in the following
subsection.

2) Autoencoder neural network: Unlike LSTM cells for neural
networks, autoencoders are not describing a cell structure of a neural
network, but rather its general architecture. Therefore, an autoencoder
can consist of different types of neural cells, such as LSTM or
RNN cells. In this work, a conventional deep concolutional LSTM
neural network will be compared with an LSTM autoencoder neural
network. This means that in both models, LSTM cells are used, only
the architecture of the model is different.

Autoencoders contain encoders and decoders, where the encoder
is used for compressing some input data into a vector and the
decoder is used for transforming the compressed representation of
the original input data back to its original form. Essentially, the
decoder part of the model tries to recreate the original input data from
the compressed, fixed-length source sequence in an unsupervised
fashion. For tasks, such as dimensionality reduction in multivariate
time series, the model is trained until the decoder part of the
autoencoder reaches a sufficient enough performance for recreating
the compressed representation of the original input data and only the
encoder part remaining [24], [25].

A representation of a autoencoder model is depicted in figure
3. Autoencoders have shown successful applications in time series
forecasting, such as in [5] and [6]. Therefore, this type of neural
network structure is used along with a classic (LSTM) neural network
for the task of time series forecasting.

Figure 3. Architecture of an autoencdoer [26].

In the next chapter, the basic structure of the benchmarking suite is
presented along with the detailed structure of the two neural networks
and the procedure of synthetic data generation, machine learning
forecasting and benchmarking of results.

IV. PROGRAM FOR BENCHMARKING MACHINE LEARNING
MODELS

The program developed for benchmarking the two
neural networks, namely LSTM and autoencoder neural
networks, consists of two classes and multiple methods per
class. The structure of the program is denoted as follows:

1 class methods():
2 def multivariate_data(...):
3 ...
4 def create_time_steps(...):
5 ...
6 def multi_step_plot(...):
7 ...
8 def plot_train_history(...):
9 ...

10

11 class benchmark()
12 def SMOTE(...):
13 ...
14 def networks(...):
15 ...

The class methods contains the main methods used for transforming
and processing the data used in the neural networks. These methods
are mostly autonomous and do not require additional user input. The
main class used for evaluating neural networks, namely the class
benchmarking, contains the two methods SMOTE and networks which
are used for creating synthetic data sets and for the type of network
used in the evaluation. These methods receive several user inputs,
which one the one hand increase the variance for creating synthetic
data sets and on the other hand tune the neural network used for
evaluation. Because these inputs are numerous and play an important
role in the use of the benchmark program, they are listed in table II.

Variables Description

SMOTE T (Numpy-)Array, shape = [n, m]

N Factor for number of new data

k Integer of nearest neighbours.

mult1 Variance multiplier for augmentation.

mult2 Variance multiplier for augmentation.

networks arr (Pandas-)Dataframe, shape = [m, n]

net Type of neural network used for fore-
casting

inter Evaluation interval for the learning
phase of the neural network

epoc Number of epochs for the learning
phase of the neural network

his Number of historical data points con-
sidered for the forecasting

fut Number of future data points to be
forecasted

reg Regularizer against over- and underfit-
ting

Table II
DESCRIPTION OF THE VARIABLES (I.E. USER INPUTS) USED IN THE MAIN

METHODS OF THE BENCHMARKING PROGRAM.

The neural networks contained in the program use a predefined
structure. These structures are presented in the following. Table III
shows the structure of the classic LSTM neural network implemented
in the program.

1 multi_step_model = tf.keras.models.Sequential()
2 multi_step_model.add(tf.keras.layers.LSTM(32,

kernel_regularizer=l2(reg),
recurrent_regularizer=l2(reg),
bias_regularizer=l2(reg), return_sequences=
True, input_shape=x_train.shape[-2:]))

3 multi_step_model.add(tf.keras.layers.LSTM(16,
kernel_regularizer=l2(reg),
recurrent_regularizer=l2(reg),
bias_regularizer=l2(reg), return_sequences=
True))

4 multi_step_model.add(tf.keras.layers.LSTM(8,
activation=’relu’))

5 multi_step_model.add(tf.keras.layers.Dense(6))
6 multi_step_model.compile(optimizer=’adam’, loss=

’mse’)

Table III
CLASSIC LSTM NEURAL NETWORK STRUCTURE IMPLEMENTED IN THE

PROGRAM

The LSTM neural network consists of three fully connected layers
with LSTM cells and 32, 16, and 8 neurons for the layers. The last
layer, a dense layer with n neurons, outputs the final n forecasts. In
this case, six forecasts are performed by the network.

Table IV shows the structure of the autoencoder implemented in
the program. Note that the autoencoder uses LSTM cells, just like the
neural network containing the classic LSTM structure. The difference
between the two neural networks is the architecture of the models,
not the cell used for learning.

1 multi_step_model = tf.keras.models.Sequential()
2 multi_step_model.add(L.LSTM(serie_size,

kernel_regularizer=l2(reg),
recurrent_regularizer=l2(reg),
bias_regularizer=l2(reg), input_shape=
x_train_multi.shape[-2:], return_sequences=
True))

3 multi_step_model.add(L.LSTM(6,
kernel_regularizer=l2(reg),
recurrent_regularizer=l2(reg),
bias_regularizer=l2(reg), return_sequences=
True))

4 multi_step_model.add(L.LSTM(1,
kernel_regularizer=l2(reg),
recurrent_regularizer=l2(reg),
bias_regularizer=l2(reg), activation=’relu’))

5 multi_step_model.add(L.RepeatVector(serie_size))
6 multi_step_model.add(L.LSTM(6,

kernel_regularizer=l2(reg),
recurrent_regularizer=l2(reg),
bias_regularizer=l2(reg), return_sequences=
True))

7 multi_step_model.add(L.LSTM(serie_size,
kernel_regularizer=l2(reg),
recurrent_regularizer=l2(reg),
bias_regularizer=l2(reg), return_sequences=
True))

8 multi_step_model.add(L.LSTM(int(math.ceil(
serie_size / 2))))

9 multi_step_model.add(L.Dense(6))
10 multi_step_model.compile(optimizer=’adam’, loss=

’mse’)

Table IV
AUTOENCODER NEURAL NETWORK STRUCTURE USING LSTM CELLS

IMPLEMENTED IN THE PROGRAM

The autoencoder neural network consists of five fully connected
layers with LSTM cells. The first and last layer of the autoencoder
contain as many neurons as there are historic steps considered for the
forecasts. The middle layers of the encoder and decoder contain 6
neurons and the compression layer 1 neuron. The last layer, a dense
layer with n neurons, outputs the final n forecasts. In this case, six
forecasts are performed by the network.

The program evaluates the LSTM neural network as well as the
autoencoder by receiving user inputs and performing the time series
forecast with both neural networks on an identical time series with the
same inputs. This gives the user a direct comparison of two models.
This means that in each test run, two models are compared with the
same inputs. The number of test runs can be arbitrary, depending on
the requirements of the user. For this work, two separate test runs
are performed with each test run including both neural networks. The
results of these tests are discussed in the next chapter.

V. RESULTS AND DISCUSSION

The benchmark program has been used with multiple different
combinations of user inputs. Table V shows the different variables
per test run as well as the benchmark results as per each metric and
neural networks at the bottom of the table. In total, two test runs with
different user inputs have been performed on each neural network.

Variables Test run # 1 Test run # 2

N 200 300

k 2 3

mult1 2 1.3

mult2 2 1.5

inter 150 200

epoc 50 100

his 24 24

fut 6 6

reg 0.1 0.13

net LSTM AE LSTM AE

RMSE 0.19 0.54 0.54 0.63

MAE 0.18 0.53 0.51 0.58

ME 0.29 0.60 0.79 0.92

CC 0.14 0.40 0.05 -0.02

KST 0.32 0.00 0.05 0.01

Table V
EVALUATION OF THE PCAFC AND MHMMR SEGMENTATION QUALITY

FOR THE DIFFERENT C-SEGMENTATIONS OF THE FILTERED MULTIVARIATE
TIME SERIES.

The classic LSTM neural network shows better performance in
both test runs. Only in the first test run, the score for the CC is
better with the autoencoder neural network. In all other instances,
the classic LSTM neural network performs better. Especially in the
first test run, the classic LSTM neural network shows a significantly
better performance as per the metrics RMSE, MAE, and ME.

The overall superiority of the classic LSTM neural network
structure could be due to autoencoders not being optimal for time
series segmentation, as the model architecture of autoencoders makes
them most performant for tasks like dimensionality reduction in
multivariate time series, but not necessarily time series forecasting.
Nevertheless, in relative terms, both neural networks perform well
for time series forecasting, considering the relatively small data set
and possible combinations of input variables defined by the user.

In the next and final chapter, the work is concluded and the future
outlook for the field of benchmarking machine learning models is
discussed.

VI. CONCLUSION AND FUTURE WORK

This work was motivated by the problem of the unbiased quan-
tification of the performance of machine learning models in an
unsupervised manner. For this purpose, several methods for the
creation of a benchmarking program were presented. For the creation
of new, synthetic data sets, the augmentation technique SMOTE
was introduced. The machine learning tasks (i.e. forecasts) were
performed with two different neural network architectures, namely a
classic LSTM neural network and an autoencoder, using conventional
LSTM cells in each layer. The benchmarking was performed with a
suite of evaluation metrics, some of which were conventional metrics
used in time series forecasting, as well as metrics which are prominent
in statistics but not observed frequently in machine learning.

The results show that with a few user inputs the program manages
to evaluate the quality of machine learning models in an unsupervised
manner and gives a user a set of results for decision making on the
quality of the used machine learning models. Also, the problem of
using different, but fundamentally similar data sets for the task of
multiple time series forecasting was solved with the modified SMOTE
algorithm, making it possible to perform benchmarking on some
implemented models an arbitrary amount of times. The shortcomings
of the benchmarking suite lay in some of the benchmarking metrics,
which could be insufficient depending on the domain of application
and requirements of some users. Therefore, additional benchmarking
metrics should be investigated in future works on benchmarking
machine learning models.

The underlying methods and algorithms implemented and used in
this work can be considered a base for future works in the field of
evaluating the performance (i.e. quality) of machine learning models.
Shortcomings of the model, such as an insufficiently diverse data
set or imprecise benchmark metrics can be countered by developing
custom metrics and methods. Another interesting approach is the use
of additional neural networks that are currently used for conventional
time series forecasting in future implementation of benchmarking
programs for machine learning models.

REFERENCES

[1] Kwetishe Joro Danjuma. “Performance Evaluation of
Machine Learning Algorithms in Post-operative Life
Expectancy in the Lung Cancer Patients”. In: (2015).
DOI: 10.48550/ARXIV.1504.04646. URL: https://arxiv.
org/abs/1504.04646.

[2] Peter Flach. “Performance Evaluation in Machine
Learning: The Good, the Bad, the Ugly, and the Way
Forward”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 33.01 (July 2019), pp. 9808–9814.
DOI: 10.1609/aaai.v33i01.33019808. URL: https://ojs.
aaai.org/index.php/AAAI/article/view/5055.

[3] Bichitrananda Behera, G. Kumaravelan, and Prem Ku-
mar B. “Performance Evaluation of Deep Learning
Algorithms in Biomedical Document Classification”.
In: 2019 11th International Conference on Advanced
Computing (ICoAC). 2019, pp. 220–224. DOI: 10.1109/
ICoAC48765.2019.246843.

[4] Steve Elsworth and Stefan Güttel. “Time Series Fore-
casting Using LSTM Networks: A Symbolic Ap-
proach”. In: ArXiv abs/2003.05672 (2020).

[5] Nam H. Nguyen and Brian Quanz. “Temporal Latent
Auto-Encoder: A Method for Probabilistic Multivariate
Time Series Forecasting”. In: ArXiv abs/2101.10460
(2021).

[6] H D Nguyen et al. “Forecasting and Anomaly De-
tection approaches using LSTM and LSTM Autoen-
coder techniques with the applications in Supply Chain
Management”. In: International Journal of Information
Management (Oct. 2020). URL: https : / / hal . archives -
ouvertes.fr/hal-03083642.

[7] Sara Hooker et al. “A Benchmark for Interpretability
Methods in Deep Neural Networks”. In: NeurIPS. 2019.

https://doi.org/10.48550/ARXIV.1504.04646

https://arxiv.org/abs/1504.04646

https://arxiv.org/abs/1504.04646

https://doi.org/10.1609/aaai.v33i01.33019808

https://ojs.aaai.org/index.php/AAAI/article/view/5055

https://ojs.aaai.org/index.php/AAAI/article/view/5055

https://doi.org/10.1109/ICoAC48765.2019.246843

https://doi.org/10.1109/ICoAC48765.2019.246843

https://hal.archives-ouvertes.fr/hal-03083642

https://hal.archives-ouvertes.fr/hal-03083642

[8] Lin Li et al. “Performance assessment of different
machine learning approaches in predicting diabetic ke-
toacidosis in adults with type 1 diabetes using electronic
health records data”. In: Pharmacoepidemiology and
Drug Safety 30.5 (2021), pp. 610–618. DOI: https : / /
doi.org/10.1002/pds.5199. eprint: https://onlinelibrary.
wiley. com / doi / pdf / 10 . 1002 / pds . 5199. URL: https :
//onlinelibrary.wiley.com/doi/abs/10.1002/pds.5199.

[9] André Bauer et al. “Libra: A Benchmark for Time
Series Forecasting Methods”. In: Proceedings of the
ACM/SPEC International Conference on Performance
Engineering. New York, NY, USA: Association for
Computing Machinery, 2021, pp. 189–200. ISBN:
9781450381949. URL: https://doi.org/10.1145/3427921.
3450241.

[10] Randal Olson et al. “PMLB: A Large Benchmark Suite
for Machine Learning Evaluation and Comparison”. In:
BioData Mining 10 (Dec. 2017). DOI: 10.1186/s13040-
017-0154-4.

[11] Xinyuan Huang et al. “Benchmarking Deep Learning
for Time Series: Challenges and Directions”. In: 2019
IEEE International Conference on Big Data (Big Data).
2019, pp. 5679–5682. DOI: 10 . 1109 / BigData47090 .
2019.9005496.

[12] Aya Abdelsalam Ismail et al. “Benchmarking Deep
Learning Interpretability in Time Series Predictions”.
In: ArXiv abs/2010.13924 (2020).

[13] Jie Zhang et al. “A suite of metrics for assessing
the performance of solar power forecasting”. In: Solar
Energy 111 (2015), pp. 157–175.

[14] Allan Mathai et al. “Development of new methods
for measuring forecast error”. In: International Journal
of Logistics Systems and Management 24 (Jan. 2016),
p. 213. DOI: 10.1504/IJLSM.2016.076472.

[15] Sungil Kim and Heeyoung Kim. “A new metric of
absolute percentage error for intermittent demand fore-
casts”. In: International Journal of Forecasting 32.3
(2016), pp. 669–679. ISSN: 0169-2070. DOI: https : / /
doi . org / 10 . 1016 / j . ijforecast . 2015 . 12 . 003. URL:
https : / / www. sciencedirect . com / science / article / pii /
S0169207016000121.

[16] Chao Chen, Jamie Twycross, and Jonathan M.
Garibaldi. “A new accuracy measure based on bounded
relative error for time series forecasting”. In: PLOS
ONE 12.3 (Mar. 2017), pp. 1–23. DOI: 10.1371/journal.
pone.0174202. URL: https://doi.org/10.1371/journal.
pone.0174202.

[17] N. V. Chawla et al. “SMOTE: Synthetic Minority Over-
sampling Technique”. In: Journal of Artificial Intelli-
gence Research 16 (June 2002), pp. 321–357. ISSN:
1076-9757. DOI: 10 . 1613 / jair . 953. URL: http : / / dx .
doi.org/10.1613/jair.953.

[18] Brian Kenji Iwana and Seiichi Uchida. “An empirical
survey of data augmentation for time series classifica-
tion with neural networks”. In: PLoS ONE 16 (2021).

[19] H.D. Nguyen et al. “Forecasting and Anomaly De-
tection approaches using LSTM and LSTM Autoen-
coder techniques with the applications in supply chain
management”. In: International Journal of Information
Management 57 (2021), p. 102282. ISSN: 0268-4012.
DOI: https://doi.org/10.1016/j.ijinfomgt.2020.102282.
URL: https://www.sciencedirect.com/science/article/pii/
S026840122031481X.

[20] Sima Siami-Namini, Neda Tavakoli, and Akbar Siami
Namin. “A Comparative Analysis of Forecasting Finan-
cial Time Series Using ARIMA, LSTM, and BiLSTM”.
In: ArXiv abs/1911.09512 (2019).

[21] Lene Finsveen. “Time-series predictions with Recurrent
Neural Networks”. In: Trondheim: Norwegian Univer-
sity of Science and Technology, 2018. URL: http://hdl.
handle.net/11250/2563516.

[22] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
Recurrent Neural Network Regularization. 2014. URL:
https://arxiv.org/abs/1409.2329.

[23] Guillaume Chevalier. The LSTM Cell. [Online; accessed
March 21, 2022]. 2018. URL: https : / / commons .
wikimedia.org/wiki/File:The LSTM Cell.svg.

[24] Kyunghyun Cho et al. “Learning Phrase Representa-
tions using RNN Encoder–Decoder for Statistical Ma-
chine Translation”. In: Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar: Association for
Computational Linguistics, Oct. 2014, pp. 1724–1734.
DOI: 10.3115/v1/D14-1179. URL: https://aclanthology.
org/D14-1179.

[25] Nitish Srivastava, Elman Mansimov, and Ruslan
Salakhutdinov. “Unsupervised Learning of Video Rep-
resentations using LSTMs”. In: CoRR abs/1502.04681
(2015). arXiv: 1502.04681. URL: http://arxiv.org/abs/
1502.04681.

[26] Michela Massi. Autoencoder schema. [Online; accessed
March 22, 2022]. 2019. URL: https : / / commons .
wikimedia.org/wiki/File:Autoencoder schema.png.

https://doi.org/https://doi.org/10.1002/pds.5199

https://doi.org/https://doi.org/10.1002/pds.5199

https://onlinelibrary.wiley.com/doi/pdf/10.1002/pds.5199

https://onlinelibrary.wiley.com/doi/pdf/10.1002/pds.5199

https://onlinelibrary.wiley.com/doi/abs/10.1002/pds.5199

https://onlinelibrary.wiley.com/doi/abs/10.1002/pds.5199

https://doi.org/10.1145/3427921.3450241

https://doi.org/10.1145/3427921.3450241

https://doi.org/10.1186/s13040-017-0154-4

https://doi.org/10.1186/s13040-017-0154-4

https://doi.org/10.1109/BigData47090.2019.9005496

https://doi.org/10.1109/BigData47090.2019.9005496

https://doi.org/10.1504/IJLSM.2016.076472

https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003

https://doi.org/https://doi.org/10.1016/j.ijforecast.2015.12.003

https://www.sciencedirect.com/science/article/pii/S0169207016000121

https://www.sciencedirect.com/science/article/pii/S0169207016000121

https://doi.org/10.1371/journal.pone.0174202

https://doi.org/10.1371/journal.pone.0174202

https://doi.org/10.1371/journal.pone.0174202

https://doi.org/10.1371/journal.pone.0174202

https://doi.org/10.1613/jair.953

http://dx.doi.org/10.1613/jair.953

http://dx.doi.org/10.1613/jair.953

https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2020.102282

https://www.sciencedirect.com/science/article/pii/S026840122031481X

https://www.sciencedirect.com/science/article/pii/S026840122031481X

http://hdl.handle.net/11250/2563516

http://hdl.handle.net/11250/2563516

https://arxiv.org/abs/1409.2329

https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

https://doi.org/10.3115/v1/D14-1179

https://aclanthology.org/D14-1179

https://aclanthology.org/D14-1179

https://arxiv.org/abs/1502.04681

http://arxiv.org/abs/1502.04681

http://arxiv.org/abs/1502.04681

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png

https://commons.wikimedia.org/wiki/File:Autoencoder_schema.png

		Introduction

		Related Work

		Methodology

		Benchmark Metric for Assessing Capabilities of Machine Learning Models

		Creating Synthetic Data Sets by Augmentation With Synthetic Minority Over-sampling Technique

		Neural Networks for Time Series Forecasting

		Long-short term memory neural network

		Autoencoder neural network

		Program for benchmarking machine learning models

		Results and Discussion

		Conclusion and future work

image1.png
= slack

Welcome back! You look nice today.

Choose a workspace below to get back to working with your team.

Workspaces for bl19@tu-clausthal.de

Tensorflow Learning Group

Q228 3members

TL

Data Engineering Laboratory 2022
= N

57 members

image2.png
Data Engineering ... v @

A Alle DMs

@ Erwihnungen & Reaktionen

<0 Slack Connect

Mehr

¥ Channels

#

+ o+ + 4+ o+ 4+ o+ 4+ o+ 4+ o+ 4

random
nlp
datasets
audio

rl

20%
notion
book
217
di-news
227
knowledge_share

Channels hinzufiigen

v Direktnachrichten

(© | Data Engineering Laboratory 2022 durchsuchen [e} ® Q,

#general v Company-wide announcements and work-based matters BER s

Montag, 21. Mirz v
Msm.Kmr 08:34 Uhr

SN BHOT - ZAAR T, BAEKRFRCWAL Ho> ThabHIbE2YEL 1,
SAEBhTE0hx. ... B&TYT.

01 &2 &
Mittwoch, 23. Marz v
Gepinnt von Mo

*
! Msm.Kmr 00:46 Unr
TSN SHA DHBERAMAE Y T AL Zoom URLERDE(ES> T EE,
https://shibaura-it.zoom.us/j/94485358800?pwd=V3/VT3pUNmdMdjM5Y3h3TVRoZnN1UTO9

=—7 1 7ID: 944 8535 8800
/8Zx 70— R: 857490

Msm.Kmr 06:07 Uhr
SN PHORESTIA, SHOPERTHAL L& S (5 0—/VLPBLOBREFR LA § 5 L ORGEIR CTL\EFT. BSI<BEKL T1045C 3 F TR T $ 3 FETY. 7 VRE
KOWEFETOTHALSE L K BEENLET.

Montag, 28. Mérz v

. Msm.Kmr 09:54 Unr

Nachricht an #general

+ ® @ A

image3.emf
Report_Bojan_Lukic_5. pdf

Report_Bojan_Lukic_5.pdf

Shibaura Institute of Technology
Data Science/Engineering Laboratory

Prof. Masaomi Kimura

Benchmarking Machine
Learning Models with
Synthetic Multivariate
Time Series
Weekly Report – Week 9

Bojan Lukic
9.3.2022

Bojan Lukic
Z521060

Overview
The report outlines the weekly activities participated and completed in line with the research

program at Shibaura Institute of Technology under the supervision of professor Masaomi

Kimura. The student is expected to complete all the activities laid out in the three-month

research program including a final paper on the topic at the end of the program. The person

in charge of the program, professor Masaomi Kimura, assigned the topic of Benchmarking

Machine Learning Models with Synthetic Multivariate Time Series to the student.

Scope
The weekly report is divided into an introductory part and a main part. The introductory part

consists of the chapters Overview, Scope, and Deliverables. These chapters help understand

the main goal of the report and the current status of the research. The main part containing

the chapters Findings/Summary, Methodology, Discussion/Questions, and References

contains the weekly findings regarding the research with all the supplementary materials and

potential questions that arise during the research.

The deliverables should already contain a relatively precise plan of action and should only be

updated to add intermediate milestones or to render the dates for milestones more precisely.

The main part, especially with the chapter Discussion/Questions, serves as a basis for

discussion on the research and things to add to, remove from, and/or change in the research

project.

Bojan Lukic
Z521060

Deliverables

Date Deliverable Status

January 21, 2022 First round of literature research. Finished

January 28, 2022
Settle on problem statement and objectives to
achieve in this research project (in terms of
benchmarks, ML models, type of data).

Finished

February 4, 2022
First draft of program to generate synthetic time
series and second round of literature research.

Finished

February11, 2022
Correction of algorithms and investigation of
further neural networks for prediction.

Finished

February18, 2022
First tests with machine learning models for time
series prediction with synthetic data.

Finished

February 25, 2022
Find metrics for benchmarking outputs of machine
learning models for time series prediction.

In Progress

March 4, 2022
First draft of program to generate synthetic time
series, make a ML forecast, and benchmark results

Finished

March 18, 2022
Finish program mentioned above and start writing
paper

In Progress

March 31, 2022 Final report and paper on the research. In Progess

Bojan Lukic
Z521060

Findings/Summary
The focus of this week’s research is the implementation of a first draft for a program which

can generate synthetic time series, use the generated time series for making forecasts with

selected machine learning models, and benchmark the results by passing minimal user input

to the program.

Methodology

Structure of the program
The program for benchmarking forecasting capabilities of machine learning models with

synthetically created datasets is structures into classes and functions.

The two classes contained in the program are:

- class methods()

which contains the methods used for visualizing the neural network training and

methods for measuring certain outputs.

- class benchmarking()

which contains the main functions for the:

o generation of synthetic time series,

o benchmarking of forecasting results, and

o the type of neural network used for forecasting

The functions contained in class methods() are:

- def multivariate_data(dataset, target, start_index, end_index,

history_size, target_size, step, single_step=False)

for splitting a data set into training and test data.

- def create_time_steps(length)

for creating a list with time steps.

- def multi_step_plot(history, true_future, prediction, title, STEP)

for plotting the forecasts from the model.

The functions contained in class benchmarking() are:

- def metric(pred, truth)

for benchmarking predicted variables against a ground truth.

- def SMOTE(T, N, k, mult1, mult2)

for creating synthetic time series from an initial time series.

- def networks(arr, network)

for selecting the network model and making the forecasts for a predefined number of

time steps.

Bojan Lukic
Z521060

The program can be executed by importing the functions from the methods and passing user

inputs to the benchmarking class to generate synthetic time series, forecast a predefined

number of variables, and benchmark these forecasts.

First test results using time series generated from an artificial signal
The first results using the first draft of the program are promising. Using the default test signal

as input time series with an arbitrary neural network, satisfying results for forecasting could

be obtained.

Figure 1 shows an exemplary plot for the training and validation results of the neural network.

Figure 1 - training and validation loss after the first test with the program

After using the compiled network model for forecasting a certain number of steps into the

future (in this case six steps), the results shown in figure 2 can be obtained.

Bojan Lukic
Z521060

Figure 2 - time series prediction using the input time series

Some preliminary performance metrics are output:

RMSE: 0.179

MAE: 0.151

ME: 0.297

SD: 0.179

It is important to note though that a good performance metric for this project is still being

researched and the metrics shown above are not the final ones. They are just used for the

time being to test the program.

Bojan Lukic
Z521060

Improvements and future steps
The results from the program look promising, however, there are several steps that could still

be performed to improve the program.

The metrics currently used for benchmarking the outputs of the neural networks are very

common ones and might not show the desired information when it comes to quantifying the

forecasting quality of neural networks. Therefore, more types of benchmarking metrics will

be researched and discussed in the following weeks.

The neural networks perform well, however, there still seems to be slight overfitting which

could be caused by either the short time series currently used or the regularizers and/or

network layers not set up correctly. More adjustments and testing will be made to improve

this part of the program.

Bojan Lukic
Z521060

Discussion/Questions
This section is reserved for discussion notes and questions.

- Employ dropout to avoid overfitting
o Source of overfitting is too many parameters in the model of the neural network
o Dropout mechanisms in neural network should be employed

Bojan Lukic
Z521060

References
Im aktuellen Dokument sind keine Quellen vorhanden.

image4.emf
document.pdf

